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Abstract
Ultralight scalars, which are states that are either exactly massless or much lighter than any other mas-
sive particle in the model, appear in many new physics scenarios. Axions and majorons constitute well-
motivated examples of this type of particle. In this work, we explore the phenomenology of these states
in low-energy leptonic observables adopting a model independent approach that includes both scalar and
pseudoscalar interactions. Then, we consider processes in which the ultralight scalar φ is directly produced,
such as µ → e φ, or acts as a mediator, as in τ → µµµ. Finally, contributions to the charged leptons mag-
netic and electric moments are studied as well. In particular, it is shown that the muon g− 2 anomaly can
be explained provided a mechanism for suppressing the experimental bounds on the coupling between
the ultralight scalar and a pair of muons is introduced.
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1. INTRODUCTION
Lepton flavor physics have an exciting experimental perspective in the coming years. Several state-of-the-art experiments recently
started taking data and a few more are about to begin [1]. These experiments focus on the search for lepton flavor violating
(LFV) processes, which are forbidden in the Standard Model (SM) but strongly motivated by the observation of neutrino flavor
oscillations, as well as more precise measurements of lepton flavor conserving observables, such as charged lepton anomalous
magnetic moments (AMMs). Specially interesting is the case of the muon observables. The second phase of the MEG experiment,
MEG-II [2, 3], is going to guide the search for the radiative LFV decay µ → eγ, whereas the Mu3e experiment will try to observe
the 3-body decay µ→ eee with a sensitivity as low as 10−16 [3, 4] for the branching ratio. Other searches include neutrinoless µ− e
conversion in nuclei and flavor factories and experiments are also aiming at a large spectrum of flavor observables. Finally, on
the flavor conserving side, very recently, the Muon g− 2 experiment at Fermilab has presented its long-awaited first results [5], in
agreement with the previous result obtained by the E821 experiment at Brookhaven [6] and hence confirming the long-standing
experimental anomaly.

Considering the present hints for the existence of new physics alongside the plethora of promising experiments in the near
future, the community of theorists is wondering what kind of new physics can be probed. In this work we study the impact on
leptonic observables of ultralight scalars φ coupling to charged leptons. We will use the term ultralight scalar to refer to any generic
scalar φ which is much lighter than the electron, being able to be considered in practice as approximately massless. We will consider
a model independent approach by means of effective operators and neglect in all the analytical calculations the mass of the scalar,
mφ. However, notice that this is not an approximation in the case of a Goldstone boson, which is exactly massless. This is the case
for the axion and the majoron, two of the most popular ultralight scalars.

2. EFFECTIVE LAGRANGIAN
Although many of the examples of ultralight scalars that can be found in the literature are pseudoscalar particles, the ultralight
scalar φ can have pure scalar couplings as well. This has not been the case in many works in the literature. Therefore, motivated
by the seek of generality, we consider here a generic scenario where the ultralight scalar can have both the scalar and pseudoscalar
interactions. So, since we are interested in low energy charged leptons processes in the presence of the real scalar, we can generally
parametrize the interaction of the ultralight scalar φ with a pair of charged leptons `α and `β, with α, β = e, µ, τ, by the effective
Lagrangian

L``φ = φ `β

(
Sβα

L PL + Sβα
R PR

)
`α + h.c. . (1)

Here PL,R = 1
2 (1∓ γ5) are the usual chiral projectors and no sum over the α and β indices is performed. Also, the couplings SL and

SR are dimensionless and we are taking into account all the possible combinations: βα = {ee, µµ, ττ, eµ, eτ, µτ}. Finally, note again
that although we are considering φ to be exactly massless for practical reasons, all our results are valid even for massive scalars for
which mφ � me.

Nevertheless, some LFV observables get contributions from other operators, namely the dipole and 4-fermion operators, which
can be found in [8]. Then, the full effective Lagrangian that we will be using is the combination

L = L``φ + L``γ + L4` , (2)
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with

L``γ =
e mα

2
`β σµν

[(
KL

2

)βα
PL +

(
KR

2

)βα
PR

]
`αFµν + h.c. , (3)

L4` = ∑
I=S,V,T
X,Y=L,R

(
AI

XY

)βαδγ
`βΓI PX`α `δΓI PY`γ + h.c. , (4)

where Fµν = ∂µ Aν − ∂ν Aµ is the usual electromagnetic field strength tensor, with Aµ the photon field, and we have defined the
tensors ΓS = 1, ΓV = γµ and ΓT = σµν. Again, we do not sum over the charged lepton flavor indices in Eqs. (3) and (4), and all
the new couplings have dimensions of mass−2. Finally, we are normalizing the Lagrangian in Eq. (3) by including the mass of the
heaviest charged lepton in the process of interest.

In the following, we will concentrate on purely leptonic observables, disregarding interactions between the ultralight scalar and
quarks. Using the analytical expressions already shown in [9], we will discuss some phenomenological aspects of several leptonic
observables, such as the decays `α → `β φ or `α → `β`β`β, or the electron and muon anomalous electric and magnetic dipole
moments.

3. PHENOMENOLOGICAL DISCUSSION
As mentioned above, all the complete analytical expressions have been obtained in [9]. Here we will only show the approximated
expressions and we will restrict ourselves to the phenomenological implications of the observables computed.

3.1. Searches for `α → `β φ

The importance of this observable lies in the fact that it can be used to obtain the most constraining experimental bounds on the
flavor violating Sβα

A couplings. Also, the very simple expression for the decay width,

Γ
(
`α → `β φ

)
=

mα

32 π

(∣∣∣Sβα
L

∣∣∣2 + ∣∣∣Sβα
R

∣∣∣2) , (5)

allows us to make straightforward derivations. Note that terms proportional to the small ratio mβ/mα have been neglected in the
expression.

Starting first with muon decays, the current strongest bound on the branching ratio for the process µ+ → e+φ was obtained at
TRIUMF with a muon beam highly polarized in the direction opposite to the muon momentum and concentrating the search in the
forward region, as explained in [10]. Therefore, the limit found was BR (µ→ e φ) < 2.6× 10−6 at 90% C.L. [11], and it was valid only
when Seµ

L = 0. However, the authors of [10] obtained the conservative bound BR (µ→ e φ) . 10−5, which is valid for any chirality
of the couplings, using the data shown in [11]. More recently, a similar bound was obtained by the TWIST collaboration [12]. So,
using this result, one finds the upper limit

|Seµ| < 5.3× 10−11 (6)

on the couplings, where we have defined the convenient combination

∣∣∣Sβα
∣∣∣ = (∣∣∣Sβα

L

∣∣∣2 + ∣∣∣Sβα
R

∣∣∣2)1/2
. (7)

Regarding to τ decays, the ARGUS collaboration found

BR (τ → e φ )

BR (τ → e ν ν̄)
< 0.015 ,

BR (τ → µ φ)

BR (τ → µ ν ν̄)
< 0.026 , (8)

at 95% C.L.. Although these bounds are the actual best limits, they are milder than the ones for muons. But they still allow us to
derive constricting bounds on the τ couplings:

|Seτ | < 5.9× 10−7 ,

|Sµτ | < 7.6× 10−7 .
(9)

Finally, these limits will likely be improved at Belle II.

3.2. `α → `β γ φ at the MEG experiment
Additional bounds to the e− µ couplings can be set using the observable µ → e γ φ alongside the results of the MEG experiment.
The decay width of the process can be written as

Γ
(
`α → `β γ φ

)
=

α mα

64π2

(∣∣∣Sβα
L

∣∣∣2 + ∣∣∣Sβα
R

∣∣∣2) I (xmin, ymin) . (10)
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FIGURE 1: Not realistic illustration of the allowed phase space region for the process µ→ e γ φ due to a given experiment. The total
phase space in principle available by kinematics is represented by the blue continuous lines, which are given by cos θeγ = ±1 in
Eq. (16). The red dashed curve represents xinf(y), which corresponds to the minimal θeγ angle given the experiment, and it excludes
the region below it. The green dotted straight lines at xmin and ymin are the minimal positron and photon energy, respectively, that
the experiment can measure, while yint is the value of y for which xmin and xinf intersect. Finally, the yellow surface is the region
over which we must integrate.

Here, terms proportional to mβ/mα have been neglected and I (xmin, ymin) is a phase space integral given by

I (xmin, ymin) =
∫

dx dy
(x− 1) (2− xy− y)

y2 (1− x− y)
, (11)

where we have defined the useful dimensionless parameters x and y, given by

x =
2Eβ

mα
, y =

2Eγ

mα
. (12)

Notice that, together with z = 2Eφ/mα, they must satisfy condition x + y + z = 2.
On the other hand, since the MEG experiment was designed specifically for the µ → eγ decay, it concentrates on Ee ' mµ/2

and cos θeγ ' −1 corresponding to the positron and the photon emitted back to back. However, and luckily for our aim here, the
experimental resolution is finite, making MEG sensitive to our decay of interest. Thus, the experimental cuts with which the final
MEG results were obtained are [20]

cos θeγ < −0.99963 , 51.0 < Eγ < 55.5 MeV , 52.4 < Ee < 55.0 MeV . (13)

These bounds serve to define the kinematical region for the calculation of the previous phase space integral. The idea is that events
of the 3-body decay that fall into this region will be detected in the experiment. Now, it proves convenient to divide the kinematical
region into two subregions,

ymin =
2 Emin

γ

mµ
< y < yint , xinf < x < xmax = 1 , (14)

and

yint < y < ymax = 1 , xmin =
2 Emin

e
mµ

< x < xmax , (15)

where xinf = xinf(y) is the value of x such that cos θeγ = cos θmin
eγ for each value of y, where θ[eγ]min is given by the upper bound

on the cosine in (13). This can be easily found by solving

cos θeγ = 1 +
2− 2(x + y)

xy
. (16)

3



Andromeda Proceedings BSM 2021, Online

FIGURE 2: Realistic version of the phase space region limited by the MEG experimental cuts, given in Eq. (13). A zoom of the
figure on the left, centered on the yellow area is shown on the figure on the right.

Finally yint is the value of y for which xmin and xinf coincide. These subregions are shown in Fig. 1 with the experimental restrictions
modified, enlarging the kinematical region available for the sake of clarity. However, a realistic representation obtained with the
cuts in Eq. (13) is shown in Fig. 2. In this last figure, it is clearly seen that we have a strong suppression due to the phase space
integral, which can be numerically computed,

I (xmin, ymin)MEG = 3.8× 10−8 . (17)

Finally, plugging this result into Eq. (10), we have that the branching ratio restricted to the MEG experimental restrictions is

BRMEG (µ→ e γ φ) = 1.5× 105
(∣∣∣Seµ

L

∣∣∣2 + ∣∣∣Seµ
R

∣∣∣2) , (18)

and combining with the MEG results, which require BR (µ→ e γ) < 4.2× 10−13 [20], leads to

|Seµ| < 1.6× 10−9 , (19)

since the the MEG bound must also be satisfied by BRMEG (µ→ e γ φ). Notice that this bound is much worse than the one given
in Eq. (6). This, however, was expected due to the strong phase space suppression at MEG, which was not designed to search for
µ → e γ φ. Nevertheless, as shown in [9], one can obtain more stringent bounds using the results of the Crystal Box experiment at
LAMPF [21, 22, 23], that lead to

|Seµ| < 9.5× 10−11 . (20)

But it is still less stringent than the bound obtained in the previous section.

3.3. `α → `βγ vs `α → `β`β`β

Now we will focus on two LFV decays at the same time, `α → `β γ and `α → `β`β`β, since they can be used, if observed, in a
complementary way to probe what kind of new physics we have. The first process can only be induced by dipole operators, having
its decay width a very simple form,

Γ
(
`α → `βγ

)
=

e2 m5
α

16 π

[∣∣∣∣(KL
2

)βα
∣∣∣∣2 + ∣∣∣∣(KR

2

)βα
∣∣∣∣2
]

. (21)

However, the second decay receives contributions from both dipole and non-dipole operators, having a very complicated expres-
sion.

General dipole contributions
First, we contemplate the general scenario with dipole contributions independent of the non-dipole ones that can be induced by
the ultralight scalar. Actually, this happens when there exist sources of LFV not related to φ. For the discussion here, we will drop
all the 4-fermion operators from the Lagrangian in Eq. (2) as well as all the right-handed photonic dipole and scalar-mediated
operators. Therefore, any contribution to the observables can only come from this effective Lagrangian:

Lsimp
LFV =

e mα
(
KL

2
)βα

2
`β σµν PL `αFµν + Sβα

L φ `β PL `α + h.c. . (22)
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FIGURE 3: Contours of BR(µ → eγ) and BR(µ → eee) in the κ-Λ parameter space using Eq. (25). The lowest values in both red
and blue are the future sensitivities for the MEG-II and Mu3e experiments, respectively, while the current bounds BR(µ → eγ) <
4.2 · 10−13 and BR(µ→ eee) < 10−12 [14] exclude the colored surfaces.

In the following, and until the next section, we will assume that Sββ
L = Sββ

L . Hence, in this simplified scenario the decay width of
the decay to three charged leptons takes the simple form

Γ
(
`−α → `−β `

−
β `

+
β

)
=

mα

512π3

{∣∣∣Sβα
L

∣∣∣2{∣∣∣Sββ
L

∣∣∣2(4 log
mα

mβ
− 49

6

)
− 2

6

[(
Sββ∗

L

)2
+
(

Sββ
L

)2
]}

+m4
α e4

∣∣∣KL
2

∣∣∣2(16
3

log
m`α

m`β

− 22
3

)}
.

(23)

Now, we make use of a useful parametrization of our remaining couplings. So, inspired by [13], we define

e
(

KL
2

)βα
≡ 1

(κ + 1)Λ2 , Sβα
L ≡ mα

κ

(κ + 1)Λ
, (24)

where Λ, which has dimensions of mass, is meant to represent the effective mass scale at which the coefficients K2
2 and SL are

induced. Besides, κ is a dimensionless parameter that accounts for the relative size of both operators in (22). If κ � 1, the scalar-
mediated contribution is dominant, while in the opposite case, the photonic dipole contribution is more important. Finally, note
that we are normalizing SL by including the mass of the heaviest charged lepton in the process we are calculating. Nevertheless,
this is only done in this particular analysis. In the rest of this work there is no hierarchy assumed among the Sβα

L,R couplings.
The expressions of the processes in the new parametrization are written as

Γ
(
`−α → `−β `

−
β `

+
β

)
=

m5
α

512π3

[
κ2

(κ + 1)4 Λ4

(
4 log

mα

mβ
− 53

6

)
+

e2

(κ + 1)4 Λ4

(
16
3

log
m`α

m`β

− 22
3

)]
,

Γ
(
`α → `βγ

)
=

m5
α

16π

1

(κ + 1)2 Λ4
,

(25)

and with them, we show in Fig. 3 both BR(µ → eγ) and BR(µ → eee) as a function of the new parameters. We can extract that if
BR(µ → eee) > 10−16 is observed and κ � 1, Λ would be bounded from above by approximately 3000 TeV. On the other hand,
we find a slightly lower limit if BR(µ → eγ) > 10−14 when κ � 1. The limits used here are the expected final sensitivities of the
MEG-II and Mu3e experiments. In addition, notice that the searches for the 3-body decay in Mu3e will be very constraining for Λ
in all the range of κ. Very similar results are shown for τ decays in Fig. 4. For these observables it is expected that the experimental
limits will be improved by an order of magnitude by the LHCb and Belle II collaborations. Interestingly, the observation of τ → eee
at Belle II is forbidden by the current limit on BR(τ → eγ) in the case of κ � 1. Therefore, if Belle II finds the decay, a larger value
of κ would be necessary. Finally, we have the same qualitative results for τ → µ decays.

φ-induced dipole contributions
In this second part of the section, we are taking a different approach. We are considering that the photonic dipole operators are
induced by loops involving the ultralight scalar φ, as it is shown in Fig. 5. So, in this scenario, we assume that the scalar’s contri-
bution to dipole operators is the dominant or the only one. To make things simpler, we will only allow the couplings involving
electrons, that is See and Seµ

L,R, to be non-zero (and also real) in the following analysis.
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FIGURE 4: Contours of BR(τ → eγ) and BR(τ → eee), on the left, and BR(τ → µγ) and BR(τ → µµµ), on the right, in the κ-Λ
parameter space using Eq. (25). The lowest values in both red and blue are the future sensitivities of the Belle II experiment [15],
while the current bounds BR(τ → eγ) < 3.3 · 10−8, BR(τ → µγ) < 4.4 · 10−8, BR(τ → eee) < 2.7 · 10−8 and BR(τ → µµµ) <
2.1 · 10−8 [14] exclude the colored surfaces.

Under these assumptions and expanding at first order in the mass of the electron, me, we have these expressions for the dipole
couplings:

(
KL

2

)eµ
=

See

96π2 m3
µ

{
3 mµ Seµ

R + me

(
−6 Seµ

L + 2 π2 Seµ
L + 3 Seµ

R

)
+ 3 meSeµ

L log

(
−m2

e
m2

µ

)[
1 + log

(
−m2

e
m2

µ

)]}
, (26)

(
KR

2

)eµ
=

See

96π2 m3
µ

{
3 mµ Seµ

L + me

(
−6 Seµ

R + 2 π2 Seµ
R + 3 Seµ

L

)
+ 3 meSeµ

R log

(
−m2

e
m2

µ

)[
1 + log

(
−m2

e
m2

µ

)]}
. (27)

With them, and defining the useful mass ratio r =
m2

µ

m2
e
, we are able to compute the ratio

Rαβ =
BR(`α → `β`β`β)

BR(`α → `β γ)
. (28)

for some simplified scenarios:

• Scenario 1: Seµ
L = 0 or Seµ

R = 0

R(1)
µe ≈

4 π r
3 α

12 log r− 53
| log(−r)|4 + r

≈ 3.2 · 104 . (29)

• Scenario 2: Seµ
L = Seµ

R

R(2)
µe ≈

4 π r
3 α

12 log r− 53
| log2(−r) +

√
r|
≈ 1.9 · 104 . (30)

• Scenario 3: Seµ
L = −Seµ

R

R(3)
µe ≈

4 π r
3 α

12 log r− 53
| log2(−r)−

√
r|
≈ 1.1 · 105 . (31)

From the obtained values, we find that Rµe � 1 in all the cases, as expected. The decay `α → `β`β`β is induced at tree-level by
exchange of the ultralight scalar, whereas `α → `β γ can only take place at loop order. Also, and more interestingly, we obtained
different predictions for the ratio depending on the particular scenario. Then, this could allow us to determine the nature of the
scalar if both processes are observed.
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γ

ℓγ ℓγ

ℓβφℓα

γα βγ

FIGURE 5: One-loop diagram contributing to the process `α → `βγ in the presence of the effective Lagrangian in Eq. (1). The greek
letters in the vertices represent the flavor indices of the couplings contributing to the diagram.

3.4. Lepton magnetic and electric dipole moments
Currently, there is a long-standing discrepancy between the Standard Model prediction for the electron and muon anomalous
magnetic moments and their experimental determination. Indeed, due to the recent publication of the results of the Muon g− 2
experiment at Fermilab [5], the deviation in the case of the muon has become more relevant.

∆ae = aexp
e − aSM

e = (−87± 36)× 10−14 , (32)

∆aµ = aexp
µ − aSM

µ = (25.1± 5.9)× 10−10 , (33)

where

aβ =
gβ − 2

2
. (34)

In the case of the muon AMM, the anomaly has been updated to the level of 4.2 σ, while for the electron AMM it is a bit lower,
slightly below ∼ 3 σ. These deviations from the theoretical predictions can be interpreted as possible hints of new physics, as we
will do in this section. Nevertheless, to fully confirm the anomalies, we still require more measurements and, possibly, improved
theoretical calculations. Concerning the EDMs, the SM predictions for these observables are well beyond the experimental sensitiv-
ities in the near future. Therefore, any positive signal of them in an experiment would be a clear indication of new physics effects,
which, in addition, must violate CP. The current best limits for the electron and muon EDMs are [7, 16]

|de| < 1.1× 10−29 e cm , (35)

|dµ| < 1.5× 10−19 e cm , (36)

both at 95% C.L..
Analytical results for all the possible contributions to the magnetic and electric dipole moment can be found in [9]. However,

we are going to concentrate on the lepton flavor conserving case, since too high values for the flavor violating couplings would be
necessary to fully explain the anomalies. The analytical expressions, which we note that are not approximations, are given by

∆aα =
1

16π2

[
3 (Re Sαα)2 − (Im Sαα)2

]
, (37)

dα = − e
8 π2 mα

(Re Sαα) (Im Sαα) . (38)

Notice here that in the case of a pseudoscalar particle, which is the case in the majority of Goldstone bosons examples, the contri-
bution to the g-2 is always negative and the muon anomaly cannot be explained.

Using the previous expressions, we show in Figure 6 favored regions for the electron diagonal coupling due to the electron
AMM and EDM. Inside the light green region we can explain the g-2 anomaly at 3 σ, while in the darker region it is explained at
1 σ. On the left panel, it is clearly seen that the bound on the electron EDM, which is the orange region, strongly constrains the
coupling, making it essentially purely real or essentially purely imaginary. However, given the low significance of the electron
AMM deviation, we can find regions in the parameter space where the anomaly is explained. We can stay in the 3 σ region even
with See = 0, but if Re See . 10−13, a value of Im See ∼ 10−5 would place us in the 1 σ region. On the other hand, one must
introduce larger couplings in order to reconcile the theoretical prediction with the experimental measurement in the case of the
(g− 2)µ, given thath the deviation is more significant here. This can be clearly seen in Figure 7. Now, the bound from the muon
EDM is not restrictive enough to appreciatly restrict the parameter space, as shown in the left panel. However, larger values of Sµµ,
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FIGURE 6: Preferred regions for the φ− e− e coupling due to the electron AMM and EDM. The deviation in the electron AMM is
explained at the 3 σ (1 σ) level inside the light (dark) green area. The region delimited by the orange continuous lines is the region
allowed by the current experimental limit of the electron EDM. The same plot is shown in the figure on the right with the abscissa
axis zoomed.

of the order of 10−4, are needed to explain the current anomaly. However, in both cases, the required values of the couplings are in
conflict with the bounds given in [9] for the diagonal couplings,

Im See < 2.1× 10−13 , Im Sµµ < 2.1× 10−10 , Re Sββ .
[

Im Sββ
]

max
. (39)

These limits come from astrophysical observations and are based on the assumptions that the scalar properties are the same in the
astrophysical medium as they are in the vacuum, but some mechanisms have been recently proposed [17, 18] under which these
assumptions are invalid. Additional bounds not derived from astrophysical scenarios can also be found in [9],

See . 10−7 , Sµµ . 10−5 . (40)

In particular, they are obtained using the results from the OSQAR experiment [19]. Therefore, a mechanism to suppress the pro-
cesses from which the limits are derived would be necessary for the ultralight scalar to be able to fully explain the current g-2
anomalies.

4. SUMMARY AND DISCUSSION
A broad variety of SM extensions include ultralight scalars both in the form of exactly massless particles, as is the case of Goldstone
bosons, and as states much lighter than any other massive particle in the model.

In this work we have explored the impact of ultralight scalars adopting a model independent general approach, considering
both scalar and pseudoscalar interactions. First, we have derived bounds on the lepton flavor violating couplings of the ultralight
scalar with the charged leptons and we have explored some phenomenological aspects of this scenario. In particular we have
seen that the observables discussed in the paper are complementary and also, that a full explanation to the g − 2 anomalies can
be possible if some mechanisms exist to suppress the processes from which the bounds on the diagonal couplings are obtained.
However, this is not the case with pure pseudoscalars, since the contribution to the observable has the opposite sign as that of the
muon anomaly.

Finally, since ultralight scalars can appear in most high- and low energy processes, their phenomenology is very rich. For
instance, these scalars can also couple to quarks, opening many hadronic and semi-leptonic channels. Therefore, in our opinion,
the ultralight scalars deserve further investigation due to the wide diversity of experimental possibilities that they include.
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FIGURE 7: Preferred regions for the φ− µ− µ coupling due to the muon AMM and EDM. It can be seen in the figure on the left
that the bound from the muon EDM (yellow continuous curves) does not restrict too much the coupling, being able to explain
the AMM of the muon (orange dashed curves) in a wide range. On the right figure, only the muon AMM is represented and the
deviation in the muon AMM is explained at the 3 σ (1 σ) level inside the light (dark) area.
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